Extensions 1→N→G→Q→1 with N=C22×C6 and Q=F5

Direct product G=N×Q with N=C22×C6 and Q=F5
dρLabelID
F5×C22×C6120F5xC2^2xC6480,1205

Semidirect products G=N:Q with N=C22×C6 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C22×C6)⋊1F5 = C3×C23⋊F5φ: F5/C5C4 ⊆ Aut C22×C61204(C2^2xC6):1F5480,291
(C22×C6)⋊2F5 = C3⋊(C23⋊F5)φ: F5/C5C4 ⊆ Aut C22×C61204(C2^2xC6):2F5480,316
(C22×C6)⋊3F5 = C6×C22⋊F5φ: F5/D5C2 ⊆ Aut C22×C6120(C2^2xC6):3F5480,1059
(C22×C6)⋊4F5 = C2×D10.D6φ: F5/D5C2 ⊆ Aut C22×C6120(C2^2xC6):4F5480,1072
(C22×C6)⋊5F5 = C23×C3⋊F5φ: F5/D5C2 ⊆ Aut C22×C6120(C2^2xC6):5F5480,1206

Non-split extensions G=N.Q with N=C22×C6 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C22×C6).1F5 = C3×C23.F5φ: F5/C5C4 ⊆ Aut C22×C61204(C2^2xC6).1F5480,293
(C22×C6).2F5 = C5⋊(C12.D4)φ: F5/C5C4 ⊆ Aut C22×C61204(C2^2xC6).2F5480,318
(C22×C6).3F5 = C3×C23.2F5φ: F5/D5C2 ⊆ Aut C22×C6240(C2^2xC6).3F5480,292
(C22×C6).4F5 = C6×C22.F5φ: F5/D5C2 ⊆ Aut C22×C6240(C2^2xC6).4F5480,1058
(C22×C6).5F5 = C30.22M4(2)φ: F5/D5C2 ⊆ Aut C22×C6240(C2^2xC6).5F5480,317
(C22×C6).6F5 = C22×C15⋊C8φ: F5/D5C2 ⊆ Aut C22×C6480(C2^2xC6).6F5480,1070
(C22×C6).7F5 = C2×C158M4(2)φ: F5/D5C2 ⊆ Aut C22×C6240(C2^2xC6).7F5480,1071
(C22×C6).8F5 = C2×C6×C5⋊C8central extension (φ=1)480(C2^2xC6).8F5480,1057

׿
×
𝔽